Conditions for Tracking in Networked Control Systems
نویسنده
چکیده
In this paper we obtain information theoretical conditions for tracking in linear time-invariant control systems. We consider the particular case where the closed loop contains a channel in the feedback loop. The mutual information rate between the feedback signal and the reference input signal is used to quantify information about the reference signal that is available for feedback. This mutual information rate must be maximized in order to improve the tracking performance. The mutual information is shown to be upper bounded by a quantity that depends on the unstable eigenvalues of the plant and on the channel capacity. If the channel capacity reaches a lower limit, the feedback signal becomes completely uncorrelated with the reference signal, rendering feedback useless. We also find a lower bound on the expected squared tracking error in terms of the entropy of a random reference signal. Examples and simulations are provided to demonstrate the results.
منابع مشابه
Stabilization of Networked Control Systems with Variable Delays and Saturating Inputs
In this paper, improved conditions for the synthesis of static state-feedback controller are derived to stabilize networked control systems (NCSs) subject to actuator saturation. Both of the data packet latency and dropout which deteriorate the performance of the closed-loop system are considered in the NCS model via variable delays. Two different techniques are employed to incorporate actuator...
متن کاملStructural Properties of Multirate Sampled-Data Systems
The application of Networked Control Systems (NCS) in which sensory and control signals are transmitted via shared data communication networks, is growing significantly and these systems have been the subject of research during the last decade. On the other hand, multirate sampled data systems have been investigated since a long time. In this paper, conditions under which a networked control sy...
متن کاملDesign of Observer-based H∞ Controller for Robust Stabilization of Networked Systems Using Switched Lyapunov Functions
In this paper, H∞ controller is synthesized for networked systems subject to random transmission delays with known upper bound and different occurrence probabilities in the both of feedback (sensor to controller) and forward (controller to actuator) channels. A remote observer is employed to improve the performance of the system by computing non-delayed estimates of the sates. The closed-loop s...
متن کاملDesigninga Neuro-Sliding Mode Controller for Networked Control Systems with Packet Dropout
This paper addresses control design in networked control system by considering stochastic packet dropouts in the forward path of the control loop. The packet dropouts are modelled by mutually independent stochastic variables satisfying Bernoulli binary distribution. A sliding mode controller is utilized to overcome the adverse influences of stochastic packet dropouts in networked control system...
متن کاملModelling and Compensation of uncertain time-delays in networked control systems with plant uncertainty using an Improved RMPC Method
Control systems with digital communication between sensors, controllers and actuators are called as Networked Control Systems (NCSs). In general, NCSs encounter with some problems such as packet dropouts and network induced delays. When plant uncertainty is added to the aforementioned problems, the design of the robust controller that is able to guarantee the stability, becomes more complex. In...
متن کاملTime Delay and Data Dropout Compensation in Networked Control Systems Using Extended Kalman Filter
In networked control systems, time delay and data dropout can degrade the performance of the control system and even destabilize the system. In the present paper, the Extended Kalman filter is employed to compensate the effects of time delay and data dropout in feedforward and feedback paths of networked control systems. In the proposed method, the extended Kalman filter is used as an observer ...
متن کامل